Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts

Manish Chandra, Qiang Xu*
National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
Received 25 September 2006; received in revised form 8 March 2007; accepted 8 March 2007
Available online 12 March 2007

Abstract

Nano-clusters of noble metals $\mathrm{Ru}, \mathrm{Rh}, \mathrm{Pd}, \mathrm{Pt}$ and Au have been supported on $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{C}$ and SiO_{2}, of which the catalytic activities have been investigated for hydrolysis of $\mathrm{NH}_{3} \mathrm{BH}_{3}$. Among these catalysts, the Ru, Rh and Pt catalysts exhibit high activities to generate stoichiometric amount of hydrogen with fast kinetics, whereas the Pd and Au catalysts are less active. Support effect has been studied by testing the hydrogen generation reaction in the presence of Pt supported on $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$, VULCAN ${ }^{\circledR}$ carbon and SiO_{2}, and it is found that Pt on $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$, which has the smallest particle size, is the most active. Concentration dependence of the hydrogen generation from aqueous $\mathrm{NH}_{3} \mathrm{BH}_{3}$ solutions has been investigated in the presence of $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ by keeping the amount of $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst unchanged, which exhibits that the hydrogen release versus time $\left(\mathrm{ml} \mathrm{H}_{2} \mathrm{~min}^{-1}\right)$ does not significantly change with increasing the $\mathrm{NH}_{3} \mathrm{BH}_{3}$ concentration, indicating that the hydrogen release rate is not dependent on the $\mathrm{NH}_{3} \mathrm{BH}_{3}$ concentration and the high activity of the Pt catalyst can be kept at high $\mathrm{NH}_{3} \mathrm{BH}_{3}$ concentrations. Activation energies have been measured to be 23,21 and $21 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathrm{Ru} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Rh} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ catalysts, respectively, which may correspond to the step of $\mathrm{B}-\mathrm{N}$ bond breaking on the metal surfaces. The particle sizes, surface morphology and surface areas of the catalysts have been obtained by TEM and BET experiments. © 2007 Elsevier B.V. All rights reserved.

Keywords: Ammonia-borane; Noble metals; Supported catalysts; Hydrogen generation

1. Introduction

Portable polymer electrolyte membrane (PEM) fuel cells are considered as an alternative to traditional batteries. PEM fuel cells require stable, non-flammable and high capacity pure hydrogen generator at ambient condition. Recently, due to high hydrogen contents, chemical hydrides are expected as potential sources for pure hydrogen, which could be directly used in portable PEM fuel cells. NaBH_{4} is one of the potential chemical hydrides, which generates hydrogen at room temperature in the presence of metal catalysts and highly basic NaOH solution [1-6].

The ammonia-borane complex, $\mathrm{NH}_{3} \mathrm{BH}_{3}$, which is stable under ordinary storage conditions [7-10], possesses high potential for hydrogen generation for portable fuel cells. It contains

[^0]$19.6 \mathrm{wt} . \%$ of hydrogen. Dehydrogenation by thermal decomposition of solid $\mathrm{NH}_{3} \mathrm{BH}_{3}$ has been widely investigated [11-15]. Heating acetonitrile and etheral solutions of $\mathrm{NH}_{3} \mathrm{BH}_{3}$ above $80^{\circ} \mathrm{C}$ releases stepwise hydrogen leading to the formation of cyclotriborazane and borazine along with other minor products [16]. Catalytic dehydrocoupling of $\mathrm{NH}_{3} \mathrm{BH}_{3}$ in diglyme or tetraglyme results in evolution of hydrogen gas along with the formation of borazine at $45^{\circ} \mathrm{C}$ [17]. In situ spectroscopic studies using ${ }^{11} \mathrm{~B}$ NMR and X-ray absorption fine structure spectroscopy (XAFS) have been performed to evaluate the rhodium-catalyzed dehydrogenation of dimethylamine borane in toluene solution [18]. Dehydrogenation of ammonia-borane in ionic liquid at $95^{\circ} \mathrm{C}$ has been reported, which releases 1.6 equivalent of H_{2} along with traces of borazine in 22 h [19].

In our previous reports we have investigated the hydrolysis of $\mathrm{NH}_{3} \mathrm{BH}_{3}$ in the presence of metals and solid acids at ambient conditions [9,10,20]. Aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}$ releases stoichoimetric amount of hydrogen $\left(\mathrm{H}_{2} / \mathrm{NH}_{3} \mathrm{BH}_{3}=3.0\right)$, corresponding to 8.9 wt . \% of hydrogen relative to the starting materials $\mathrm{NH}_{3} \mathrm{BH}_{3}$
and $\mathrm{H}_{2} \mathrm{O}$ (Eq. (1)), in the presence of $\mathrm{Pt}, \mathrm{Rh}, \mathrm{Pd}$ [9] and some nonnoble metal catalysts [20]. Among these metals Pt was found to be the most active.
$\mathrm{NH}_{3} \mathrm{BH}_{3}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { r.t. }]{\mathrm{Metal}} \mathrm{NH}_{4}^{+}+\mathrm{BO}_{2}^{-}+3 \mathrm{H}_{2}$
Catalytic activity of metals is largely dependent upon the morphology and the support. Our present work is devoted to the study of nano-clusters of Pt and other noble metals on various supports for hydrogen generation from aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}$. We present that catalytic performance of the noble metals $\mathrm{Ru}, \mathrm{Rh}, \mathrm{Pd}, \mathrm{Pt}$ and Au for hydrogen generation from aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}$ may be improved by modifying the metal catalysts.

2. Experimental

2.1. Preparation of catalysts

Supported metal catalysts used in this study were prepared by a conventional impregnation method. $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ (Aluminium Oxide, specific surface area $=43 \mathrm{~m}^{2} \mathrm{~g}^{-1}$, Aldrich), VULCAN ${ }^{\circledR}$ carbon (VULCAN XC-72R, specific surface area $=240 \mathrm{~m}^{2} \mathrm{~g}^{-1}$, Cabot Corp., USA) and SiO_{2} (fumed silica, specific surface area $=390 \mathrm{~m}^{2} \mathrm{~g}^{-1}$, Aldrich) were used as the catalytic supports. For preparing $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ and SiO_{2} supported catalysts, impregnation was performed by stirring the supports with known amounts of aqueous solutions of $\mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}, \mathrm{Rh}\left(\mathrm{NO}_{3}\right)_{3}$ (Kanto Chemical, Japan), $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot x \mathrm{H}_{2} \mathrm{O}, \mathrm{PtCl}_{4}$ (Aldrich) and $\mathrm{HAuCl}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Kishida Chemicals, Japan), respectively, at 363 K for $12-16 \mathrm{~h}$. The solvent was evaporated to dryness at 363 K. The Ru, Rh, Pd, Pt and Au samples were calcined in air for 5 h at 573 K . After purging argon in the fixed bed stainless steel reactor containing the calcined samples, a continuous H_{2} gas flow was introduced at a rate of $50 \mathrm{ml} \mathrm{min}^{-1}$ at 523 K for 5 h for reduction. For preparing the VULCAN ${ }^{\circledR}$ carbon supported platinum catalyst, impregnation was performed by ultrasonicating the mixture of PtCl_{4} dissolved in methanol and VULCAN ${ }^{\circledR}$ carbon for 30 min at room temperature. The ultrasonicated sample was dried at 363 K for 12 h and then the dried sample was reduced by a continuous H_{2} gas flow at a rate of $150 \mathrm{ml} \mathrm{min}^{-1}$ at 523 K for 2 h in a similar way. After reduction the catalysts were stored in an argon atmosphere until being used for hydrogen generation.

2.2. Characterization of catalysts

The morphology of the catalysts was observed using a Hitachi H-9000NA transmission electron microscope (TEM) operating with an acceleration voltage of 200 kV using Cu TEM grid as sample holder. Average metal particle sizes were measured from TEM micrographs.

The textural data of catalysts were measured by N_{2} adsorption at liquid N_{2} temperature with a micromeritics ASAP 2010 BET analyzer. Before the analysis the samples were outgassed at $300^{\circ} \mathrm{C}$ for $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$ and its supported catalysts and at $275^{\circ} \mathrm{C}$ for VULCAN ${ }^{\circledR}$ carbon and its supported catalyst under vacuum for 4 h .

2.3. Hydrogen generation

Commercial ammonia-borane, $\mathrm{NH}_{3} \mathrm{BH}_{3}$ (Tech. 90%, Aldrich) was used as purchased. Reaction apparatus for measuring the hydrogen generation rate from the aq. $\mathrm{NH}_{3} \mathrm{BH}^{-}{ }_{3}$ solution is similar to that previously reported [9,10]. In general, the hydrolysis reactions of aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}$ with prepared catalysts were carried out at room temperature. A weighed catalyst was placed in the three-necked round-bottom flask (50 ml) and the reaction was started by stirring the mixture of the catalyst and the aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}$ solution added from the addition funnel, and the evolution of gas was monitored using a gas burette to an accuracy of $\pm 0.5 \mathrm{ml}$ for the 0.33 and $1 \mathrm{wt} . \%$ aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}$ solutions and using a flow-meter (Horiba STEC, SEF 7330) to an accuracy of $\pm 1 \%$ for the $1,5,10,15$ and $25 \mathrm{wt} . \%$ aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}$ solutions. For obtaining the activation energy, we carried out the hydrogen generation reaction at 25,30 and $40^{\circ} \mathrm{C}$. A water jacket was used to keep the solution temperature constant within the range of the set value of $\pm 1.0^{\circ} \mathrm{C}$.

3. Results and discussion

Generally, the catalytic behavior of catalysts is largely dependent upon the surface morphology, metal particle size, and support. In our previous investigations [9], we have shown that Pt is the most efficient catalyst for the release of stoichiometric hydrogen. This paper reports the activities of supported nanoclusters of Pt and other noble metals, $\mathrm{Ru}, \mathrm{Rh}, \mathrm{Pd}$ and Au , on different supports, $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{VULCAN}{ }^{\circledR}$ carbon and SiO_{2}, for hydrogen generation from aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}$.

The morphology and particle sizes of the $\mathrm{Ru} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Rh} / \gamma$ $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Pd} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Pt} / \mathrm{C}, \mathrm{Pt} / \mathrm{SiO}_{2}$ and $\mathrm{Au} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ catalysts were examined using TEM (Fig. 1). Spherical metal particles are embedded on the edges of the crystalline $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ support in the cases of $\mathrm{Ru} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Rh} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Pd} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$, $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Au} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ catalysts, while in the cases of Pt / C and $\mathrm{Pt} / \mathrm{SiO}_{2}$ catalysts, metal particles are dispersed on the surfaces of amorphous VULCAN ${ }^{\circledR}$ carbon and SiO_{2} supports, respectively. The average particle sizes are $1.8,2.5,3.6,1.5$, 1.9, 5.1 and 2.6 nm for $\mathrm{Ru} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Rh} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Pd} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$, $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Pt} / \mathrm{C}, \mathrm{Pt} / \mathrm{SiO}_{2}$ and $\mathrm{Au} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ catalysts, respectively. Histograms representing the particle size distributions for the $\mathrm{Ru} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Rh} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Pd} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Pt} / \mathrm{C}$, $\mathrm{Pt} / \mathrm{SiO}_{2}$ and $\mathrm{Au} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ catalysts are shown in Fig. 2.

The specific surface areas of the catalysts determined by using the BET method are summarized in Table 1. There are only small changes in the surface area with loading metals to the supports. We have observed significant increase in pore size and pore volume for metal supported $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ and SiO_{2} catalysts. During impregnation process in aqueous medium water is dissociatively chemisorbed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ or SiO_{2}, which causes reconstruction of surfaces and also changes in pore size and pore volume [21-24]. Our results are in line with the previous investigations. Such a phenomenon was not observed for VULCAN ${ }^{\circledR}$ carbon supported catalysts.

Fig. 3 shows the hydrogen generation profiles with time for the reactions of aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}(1.0 \mathrm{wt} . \%)$ in the presence

Fig. 1. TEM micrographs for: (a) $\mathrm{Ru} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$, (b) $\mathrm{Rh} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$, (c) $\mathrm{Pd} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$, (d) $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$, (e) Pt / C, (f) $\mathrm{Pt} / \mathrm{SiO}_{2}$ and (g) $\mathrm{Au} / \gamma-\mathrm{Al} \mathrm{I}_{2} \mathrm{O}_{3}$ catalysts (2 wt . \%) and (h) a graph representing the average metal particle size (nm) for the above mentioned catalysts (particle sizes are obtained from $60,172,65,137,51,217$ and 140 metal particles, respectively, on the basis of TEM micrographs).
of the $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ supported $\mathrm{Ru}, \mathrm{Rh}, \mathrm{Pd}, \mathrm{Pt}$ and Au catalysts ($2 \mathrm{wt} . \%$) with the metal contents normalized to the same (metal $/ \mathrm{NH}_{3} \mathrm{BH}_{3}=0.018$). It is revealed that the Ru, Rh, and Pt catalysts, of which the average particle sizes are $1.8,2.5$ and 1.5 nm , respectively, are highly active for the hydrolysis of $\mathrm{NH}_{3} \mathrm{BH}_{3}$, exhibiting hydrogen release of $\mathrm{H}_{2} / \mathrm{NH}_{3} \mathrm{BH}_{3}=3.0$ in 3 , 1.3 and 0.75 min , respectively. It has been reported that $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ itself (as well as the $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ supported Fe catalyst) is inactive to this reaction [20]. It is noted that the bulk RuO_{2} precursor
did not show catalytic activity for the hydrolysis of $\mathrm{NH}_{3} \mathrm{BH}_{3}$ [9], while the supported Ru nano particles show high activity, suggesting that the particle size is an important factor for the catalytic activity. In comparison with the other platinum-group metal catalysts, $\mathrm{Pd} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$, which has an average particle size of 3.6 nm , shows a lower catalytic activity, releasing hydrogen of $\mathrm{H}_{2} / \mathrm{NH}_{3} \mathrm{BH}_{3}=2.9$ in 120 min. The $\mathrm{Au} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst, which has an average particle size of 2.6 nm , exhibits a much lower catalytic activity for hydrolysis of aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}$, releasing hydrogen

Table 1
Characteristics of supports and catalysts tested for the hydrogen generation reaction

Catalysts	Metal content (wt.\%)	BET surface area ($\mathrm{m}^{2} \mathrm{~g}^{-1}$)	Pore volume ($\mathrm{cm}^{3} \mathrm{~g}^{-1}$)	Pore size (\AA)	Average particle size ${ }^{\text {a }}$ (nm)
$\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	-	43	0.091	84	-
$\mathrm{C}^{\text {b }}$	-	240	0.312	51	-
$\mathrm{SiO}_{2}{ }^{\text {c }}$	-	390	0.425	55	-
$\mathrm{Ru} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	2	40	0.183	186	1.8
$\mathrm{Rh} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	2	41	0.188	182	2.5
$\mathrm{Pd} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	2	37	0.188	205	3.6
$\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	2	38	0.175	183	1.5
Pt / C	2	239	0.334	56	1.9
$\mathrm{Pt} / \mathrm{SiO}_{2}$	2	396	1.20	122	5.1
$\mathrm{Au} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$	2	35	0.177	200	2.6

[^1]

Fig. 2. Metal particle size distributions of: (a) $\mathrm{Ru} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$, (b) $\mathrm{Rh} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$, (c) $\mathrm{Pd} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$, (d) $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$, (e) Pt / C, (f) $\mathrm{Pt} / \mathrm{SiO}_{2} \mathrm{and}\left(\mathrm{g}\right.$) $\mathrm{Au} / \gamma-\mathrm{Al} \mathrm{O}_{2} \mathrm{O}_{3}$ catalysts (2 wt. \%).

Fig. 3. Hydrogen generation from aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}(1 \mathrm{wt} . \%, 10 \mathrm{ml})$ in the presence of: (a) the $\mathrm{Ru} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Rh} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ catalysts ($2 \mathrm{wt} . \%$) and (b) the $\mathrm{Pd} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Au} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ catalysts $(2 \mathrm{wt} . \%)\left(\right.$ metal $\left./ \mathrm{NH}_{3} \mathrm{BH}_{3}=0.018\right)$.
of $\mathrm{H}_{2} / \mathrm{NH}_{3} \mathrm{BH}_{3}=1.9 \mathrm{in} 610 \mathrm{~min}$. It is well known that the particle size is an important factor for the activity of gold catalyst [25]. In the previous work, we found that the $\mathrm{Au}_{2} \mathrm{O}_{3}$ precursor could not give active gold catalyst for the hydrolysis of $\mathrm{NH}_{3} \mathrm{BH}_{3}$ [9]. The present supported gold catalyst, $\mathrm{Au} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$, has an average particle size (2.6 nm), which is in the range of active gold catalysts, although its activity is much lower than the platinum-group metal catalysts. Previous studies have reported that gold is a good catalyst for oxidation but not for hydrolysis of sodium borohydride [26]. Noteworthily, the present study also reveals that the catalytic activity of Rh and Pd can be significantly improved, in comparison with $[\mathrm{Rh}(1,5-\mathrm{COD})(\mu-\mathrm{Cl})]_{2}$ and Pd Black in the previous work [9], by supporting the nanoparticles to supports. Furthermore, it is noteworthy that no significant deactivation was observed for the used noble metal catalysts recycled by washing with water and then dried at $100^{\circ} \mathrm{C}$ for one night. For example, hydrogen of stoichiometric amount $\left(\mathrm{H}_{2} / \mathrm{NH}_{3} \mathrm{BH}_{3}\right.$ ratio $\left.=3.0\right)$ was released in 1.6 min with the recycled $2 \mathrm{wt} . \% \mathrm{Rh} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst, close to the observation with the fresh catalyst.

We have studied the effect of $\mathrm{NH}_{3} \mathrm{BH}_{3}$ concentration on the hydrogen generation rate using $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ ($2 \mathrm{wt} . \%$) catalysts. The amount of $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}(2 \mathrm{wt} . \%)$ catalyst (0.050 g) for hydrogen generation was kept unchanged. As shown in Figs. 4 and 5 it is found that by increasing the $\mathrm{NH}_{3} \mathrm{BH}_{3}$ concentration

Fig. 4. Volume of hydrogen generated vs. reaction time from aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}$ solutions with different concentrations in the presence of $2 \mathrm{wt} . \% \mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ with the catalyst amount kept unchanged: (a) $0.33 \mathrm{wt} . \%\left(\mathrm{Pt} / \mathrm{NH}_{3} \mathrm{BH}_{3}=0.00534\right)$ (monitored by gas burette), (b) $1.0 \mathrm{wt} . \% \mathrm{Pt} / \mathrm{NH}_{3} \mathrm{BH}_{3}=0.0018$) (monitored by both gas burette (b1) and flow-meter (b2)), (c) $5.0 \mathrm{wt} . \%\left(\mathrm{Pt} / \mathrm{NH}_{3} \mathrm{BH}_{3}=0.00035\right)$, (d) $10.0 \mathrm{wt} . \%\left(\mathrm{Pt} / \mathrm{NH}_{3} \mathrm{BH}_{3}=0.00018\right)$, (e) $15.0 \mathrm{wt} . \%\left(\mathrm{Pt} / \mathrm{NH}_{3} \mathrm{BH}_{3}=0.00012\right)$ and (f) $25.0 \mathrm{wt} . \%\left(\mathrm{Pt} / \mathrm{NH}_{3} \mathrm{BH}_{3}=0.00007\right)$ at room temperature. Unless indicated, the volume of hydrogen released was monitored by flow-meter.
from 0.33 to $25.0 \mathrm{wt} . \%$, the change of the $\mathrm{H}_{2} / \mathrm{NH}_{3} \mathrm{BH}_{3}$ ratio against time decreases but the actual rate of hydrogen release ($\mathrm{ml} \mathrm{H}_{2} \mathrm{~min}^{-1}$) does not change significantly, indicating that the hydrogen release rate is not largely dependent of the $\mathrm{NH}_{3} \mathrm{BH}_{3}$ concentration and the high activity of the Pt catalyst can be kept at high $\mathrm{NH}_{3} \mathrm{BH}_{3}$ concentrations. We found that after completion of hydrogen generation reactions from high concentration $\mathrm{NH}_{3} \mathrm{BH}_{3}$ some solid residue was observed, which was completely soluble in excess water. It has been reported that the resulting solution after hydrogen release from aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}$ exhibits a single ${ }^{11} \mathrm{~B}$ resonance around 8 ppm due to products such as $\mathrm{H}_{3} \mathrm{BO}_{3}, \mathrm{BO}_{2}{ }^{-}$and other borate species in equilibrium in the solution, which undergoes rapid exchange between each other on the NMR time scale [9], and the present solid residue formed from the high concentration $\mathrm{NH}_{3} \mathrm{BH}_{3}$ solution may be

Fig. 5. The $\mathrm{H}_{2} / \mathrm{NH}_{3} \mathrm{BH}_{3}$ ratio vs. reaction time corresponding to the results shown in Fig. 4.

Fig. 6. Hydrogen generation from aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}(1 \mathrm{wt} . \%, 10 \mathrm{ml})$ in the presence of $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}(2 \mathrm{wt} . \%), \mathrm{Pt} / \mathrm{C}(2 \mathrm{wt} . \%), \mathrm{Pt} / \mathrm{C}(20 \mathrm{wt} . \%)$ and $\mathrm{Pt} / \mathrm{SiO}_{2}$ (2 wt. \%) $\left(\mathrm{Pt} / \mathrm{NH}_{3} \mathrm{BH}_{3}=0.018\right)$.
considered to be the precipitation of some borates due to the limited solubility. It is noted that upon the completion of reaction the $\mathrm{H}_{2} / \mathrm{NH}_{3} \mathrm{BH}_{3}$ ratio reaches the same value, 3.0, at different concentrations, independent of the weight of $\mathrm{H}_{2} \mathrm{O}$.

We have tested the catalytic activities of Pt on different supports with the Pt content kept unchanged $\left(\mathrm{Pt} / \mathrm{NH}_{3} \mathrm{BH}_{3}=0.018\right)$.

Fig. 7. (a) Hydrogen generation from aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}(1 \mathrm{wt} . \%, 10 \mathrm{ml})$ in the presence of $\mathrm{Ru} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}(2 \mathrm{wt} . \%)\left(\mathrm{Ru} / \mathrm{NH}_{3} \mathrm{BH}_{3}=0.009\right)$ at 25,30 and $40^{\circ} \mathrm{C}$ and (b) the corresponding $\log k$ vs. $1 / T$ plot calculated from (a). Calculated activation energy is $23 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

As shown in Fig. 6 the hydrogen generation rates from aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}$ are in the order of $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{Pt} / \mathrm{C}>\mathrm{Pt} / \mathrm{SiO}_{2}$ with the same Pt loading on support ($2 \mathrm{wt} . \%$) while the particle sizes of these catalysts are in the order of $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}(1.5 \mathrm{~nm})$ $<\mathrm{Pt} / \mathrm{C}(1.9 \mathrm{~nm})<\mathrm{Pt} / \mathrm{SiO}_{2}(5.1 \mathrm{~nm})$. With $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Pt} / \mathrm{C}$ and $\mathrm{Pt} / \mathrm{SiO}_{2}$ hydrogen is released with $\mathrm{H}_{2} / \mathrm{NH}_{3} \mathrm{BH}_{3}=3.0$ in 0.75 , 1.5 and 3 min , respectively. Comparing the catalytic activity of commercial Pt/C ($20 \mathrm{wt} . \%$, Johnson Matthey; 2.5 nm) catalyst with the prepared Pt / C ($2 \mathrm{wt} . \%, 1.9 \mathrm{~nm}$) catalyst, it is found that the one with low loading Pt has a little higher activity.

It is well known that the reaction rate generally increases with the reaction temperature. The values of rate constants k have been determined for hydrogen generation from aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}$ in the presence of $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ supported Ru, Rh and Pt catalysts $\left(\right.$ metal $\left./ \mathrm{NH}_{3} \mathrm{BH}_{3}=0.009\right)$ at different temperatures $\left(25-40{ }^{\circ} \mathrm{C}\right)$ as shown in Figs. 7-9, respectively. The $\mathrm{NH}_{3} \mathrm{BH}_{3}$ concentration decreases as the reaction proceeds and H_{2} volume generated by the catalysts increases nearly linearly with time. Under our experimental conditions, the reaction rate constant, k, is nearly constant for a given temperature, implying zero order kinetics for the $\mathrm{NH}_{3} \mathrm{BH}_{3}$ hydrolysis reaction. This suggests that the hydrogen generation rate is controlled within surface reaction. Thus the rate law for the catalytic hydrolysis of $\mathrm{NH}_{3} \mathrm{BH}_{3}$ can be given

Fig. 8. (a) Hydrogen generation from aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}(1 \mathrm{wt} . \%, 10 \mathrm{ml})$ in the presence of $\mathrm{Rh} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}(2 \mathrm{wt} . \%)\left(\mathrm{Rh} / \mathrm{NH}_{3} \mathrm{BH}_{3}=0.009\right)$ at 25,30 and $40^{\circ} \mathrm{C}$ and (b) the corresponding $\log k$ vs. $1 / T$ plot calculated from (a). Calculated activation energy is $21 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Fig. 9. (a) Hydrogen generation from aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}(1 \mathrm{wt} . \%, 10 \mathrm{ml})$ in the presence of $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}(2 \mathrm{wt} . \%)\left(\mathrm{Pt} / \mathrm{NH}_{3} \mathrm{BH}_{3}=0.009\right)$ at 25,30 and $40^{\circ} \mathrm{C}$ and (b) the corresponding $\log k$ vs. $1 / T$ plot calculated from (a). Calculated activation energy is $21 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
as
$\frac{-1 / 3 \mathrm{~d}\left[\mathrm{NH}_{3} \mathrm{BH}_{3}\right]}{\mathrm{d} t}=\frac{\mathrm{d}\left[\mathrm{H}_{2}\right]}{\mathrm{d} t}=k$
The reaction rate equation can be written as follows:
$k=k_{0} \exp ^{-E / R T}$
where k_{0} is reaction constant, E the activation energy for the reaction, R the gas constant and T is the reaction temperature. Following Eq. (3), Figs. 7b-9b show the Arrhenius plots, $\log k$ versus the reciprocal absolute temperature. The slopes of the straight lines give activation energies of 23,21 and $21 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the $\mathrm{Ru} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Rh} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ catalysts, respectively. For comparison, in case of hydrogen generation from aq. NaBH_{4} in the presence of Ru catalyst supported on IRA-400 [2] and $\mathrm{Ru}(0)$ nanoclusters [5], the activation energies are 47 and $29 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively.

It is proposed as one of the plausible mechanisms in our previous reports that the activation process for catalytic hydrolysis reaction takes place on the surface of metal catalysts [$9,10,20]$. The metal particle surface and $\mathrm{NH}_{3} \mathrm{BH}_{3}$ molecule form activated complex species, to which attack by a $\mathrm{H}_{2} \mathrm{O}$ molecule leads to dissociation of $\mathrm{B}-\mathrm{N}$ bond which is most likely the rate-determining step and hydrolysis of the resulting BH_{3} intermediate to borate species along with hydrogen generation. At $25^{\circ} \mathrm{C}$, the
standard-state enthalpy change for the Eq. (1) can be calculated to be $-156 \mathrm{~kJ} \mathrm{~mol}^{-1}$ from the standard enthalpies of $-178 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(\mathrm{NH}_{3} \mathrm{BH}_{3}\right),-572 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(2 \mathrm{H}_{2} \mathrm{O}\right),-133$ $\mathrm{kJ} \mathrm{mol}^{-1}\left(\mathrm{NH}_{4}^{+}\right),-772 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(\mathrm{BO}_{2}^{-}\right)$, and $0\left(3 \mathrm{H}_{2}\right)$ [27] and this reaction is exothermic. In comparison, the standardstate enthalpy change for the hydrogen generation reaction of sodium borohydride $\mathrm{NaBH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaBO}_{2}+4 \mathrm{H}_{2}$ is $-217 \mathrm{~kJ} \mathrm{~mol}^{-1}$ [3]. From the present catalytic hydrolysis reaction 0.195 g of hydrogen is liberated per 1 g of the $\mathrm{NH}_{3} \mathrm{BH}_{3}$. The generation of $1 \mathrm{~g} \mathrm{H}_{2} \mathrm{~s}^{-1}$ corresponds to $96.5 \mathrm{kA} \times 0.7=68 \mathrm{~kW}$, assuming a standard PEM fuel cell operates at 0.7 V . The amount of $\mathrm{NH}_{3} \mathrm{BH}_{3}$ needed is 0.27 kg for supplying hydrogen to such a PEMFC system to produce 1 kW of electric power for 1 h .

4. Conclusion

Supported Ru, Rh, Pd, Pt and Au nano-clusters have been developed as catalysts for hydrogen generation from aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}$. The $\mathrm{Ru}, \mathrm{Rh}, \mathrm{Pd}$ and Pt catalysts were found to be active for release of stoichiometric hydrogen from aq. $\mathrm{NH}_{3} \mathrm{BH}_{3}$. Support effect has been investigated for Pt on different supports ($\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{VULCAN}^{\circledR}$ carbon and SiO_{2}) and $\mathrm{Pt} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ is found to be the most active. Activation energies for hydrogen generation in the presence of the $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ supported Ru , Rh and Pt catalysts are 23,21 and $21 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. High concentration $\mathrm{NH}_{3} \mathrm{BH}_{3}$ solutions also release the stoichiometric amounts of hydrogen $\left(\mathrm{H}_{2} / \mathrm{NH}_{3} \mathrm{BH}_{3}=3.0\right)$ at low catalyst $/ \mathrm{NH}_{3} \mathrm{BH}_{3}$ ratios. The high performance of the noble metal catalysts makes them a promising candidate to develop highly efficient portable hydrogen generation systems.

Acknowledgement

The authors would like to acknowledge Ms. Uetani Chieko for TEM measurements. We are thankful to AIST and JSPS for financial support. M.C. thanks JSPS and Marubun Research Promotion Foundation for fellowships.

References

[1] H.I. Schlesinger, H.C. Brown, A.E. Finholt, J.R. Gilbreath, H.R. Hoekstra, E.K. Hyde, J. Am. Chem. Soc. 75 (1953) 215.
[2] S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo, M. Binder, J. Power Sources 85 (2000) 186.
[3] Y. Kojima, Y. Kawai, H. Nakanishi, S. Matsumoto, J. Power Sources 135 (2004) 36.
[4] S.U. Jeong, R.K. Kim, E.A. Cho, H.-J. Kim, S.-W. Nam, I.-H. Oh, S.-A. Hong, S.H. Kim, J. Power Sources 144 (2005) 129.
[5] S. Özkar, M. Zahmakiran, J. Alloys Compd. 404 (2005) 728.
[6] B.H. Liu, Z.P. Li, S. Suda, J. Alloys Compd. 415 (2006) 288.
[7] V.P. Sorokin, B.I. Vesnina, N.S. Klimova, Zh. Neorg. Khim. 66 (1963) 8.
[8] P.A. Storozhenko, R.A. Svitsyn, V.A. Ketsko, A.K. Buryak, A.V. Ul’yanov, Russ. J. Inorg. Chem. 50 (2005) 980.
[9] M. Chandra, Q. Xu, J. Power Sources 156 (2006) 190.
[10] M. Chandra, Q. Xu, J. Power Sources 159 (2006) 855.
[11] G. Wolf, J. Baumann, F. Baitalow, F.P. Hoffmann, Thermochim. Acta 343 (2000) 19.
[12] J. Baumann, F. Baitalow, G. Wolf, Thermochim. Acta 430 (2005) 9.
[13] A. T-Raissi, Proceedings of the 2002 U.S. DOE Hydrogen Program Review, http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/32405b15.pdf.
[14] A. Gutowska, L. Li, Y. Shin, C.M. Wang, X.S. Li, J.C. Linehan, R.S. Smith, B.D. Kay, B. Schmid, W. Shaw, M. Gutowski, T. Autrey, Angew. Chem. Int. Ed. 44 (2005) 3578.
[15] S.D. Benedetto, M. Carewska, C. Cento, P. Gislon, M. Pasquali, S. Scaccia, P.P. Prosini, Thermochim. Acta 441 (2006) 184.
[16] J.S. Wang, R.A. Geanangel, Inorg. Chim. Acta 148 (1988) 185.
[17] C.A. Jaska, K. Temple, A.J. Lough, I. Manners, J. Am. Chem. Soc. 125 (2003) 9424.
[18] Y. Chen, J.L. Fulton, J.C. Linehan, T. Autrey, J. Am. Chem. Soc. 127 (2005) 3254.
[19] M.E. Bluhm, M.G. Bradley, R. Buttrick III, U. Kusari, L.G. Sneddon, J. Am. Chem. Soc. 128 (2006) 7748.
[20] Q. Xu, M. Chandra, J. Power Sources 163 (2006) 364.
[21] D. Coster, A.L. Blumenfeld, J.J. Fripiat, J. Phys. Chem. 98 (1994) 6201.
[22] D.J. Coster, J.J. Fripiat, M. Muscas, A. Auroux, Langmuir 11 (1995) 2615.
[23] H. Ibach, H. Wagner, D. Bruchmann, Solid State Commun. 42 (1982) 457.
[24] S.H. Garofalini, J. Non-Cryst. Solids 120 (1990) 1.
[25] M. Haruta, Catal. Today 36 (1997) 153.
[26] M.V. Mirkin, H. Yang, A.J. Bard, J. Electrochem. Soc. 139 (1992) 2212.
[27] R.C. Weast, M.J. Astle, W.H. Beyer (Eds.), CRC Handbook of Chemistry and Physics, sixty seventh ed., CRC Press, Florida, 1986-1987.

[^0]: * Corresponding author. Tel.: +81 72751 9562; fax: +81 727519629 .

 E-mail address: q.xu@aist.go.jp (Q. Xu).

[^1]: ${ }^{\text {a }}$ Calculated from TEM micrographs.
 ${ }^{\mathrm{b}}$ VULCAN ${ }^{\circledR}$ carbon.
 ${ }^{\mathrm{c}}$ Fumed SiO_{2}.

